Home ASE3: Couple de variables aleatoires discretes et analyse des donnees - 2
Post
Cancel

ASE3: Couple de variables aleatoires discretes et analyse des donnees - 2

Lien de la note Hackmd

Rappels

\[Cov(X,Y)=\underbrace{<X-E(X),Y-E(Y)>}_{\text{produit scalaire}}\\ \sigma_X=\sqrt{V(X)}=\Vert X-E(X)\Vert\\ \rho(X,Y)=\frac{<X-E(X), Y-E(Y)>}{\Vert X-E(X)\Vert\Vert Y-E(Y)\Vert}\]

\[\cos(\theta)=\frac{<u,v>}{\Vert u\Vert\Vert v\Vert}\]

Demonstration

\[\begin{aligned} V(X+Y)&=E((X+Y)^2) - (\underbrace{E(X+Y)}_{E(X) + E(Y)})^2\\ &=E(X^2+2XY+Y^2)-E^2(X)-2E(X)E(Y)-E^2(Y)\\ &= E(X^2)+2E(XY) + E(Y^2)-E^2(X)-2E(X)E(Y)-E^2(Y)\\ &=V(X) +V(Y)+2(E(XY)-E(X)E(Y))\\ &=\color{red}{V(X)+V(Y)+2Cov(X,Y)} \end{aligned}\]

Remarque: Si $X$ et $Y$ sont independantes $\Rightarrow$ $Cov(X,Y)=0\Rightarrow\color{red}{V(X+Y) = V(X)+V(Y)}$

This post is licensed under CC BY 4.0 by the author.