Home EPIQUANTI : Partie logiciel
Post
Cancel

EPIQUANTI : Partie logiciel

Lien de la note Hackmd

Lien du livre du prof

Slide du cours

Registers

n bits registern qubits register
$\color{red}{2^n\text{ possible states } \textbf{once at a time}}$$\color{green}{ 2^n \text{possible states }\textbf{linearly superposed}}$
evaluablepartially evaluable
independant copiesno copies
individually erasablenon individualy erasable
non destructive readoutvalue changed after readout
deterministicprobabilistic

Gates

Classical logic gates

Irreversible gates:

  • NAND
  • NOR
  • AND
  • OR

Quelle est leur consequence ?

Comme on perd un bit, on a une perte d’energie Decouverte par Rolf Landauer

Quantum gates

  • NOT: rotation $X$
  • Rotation $Y$
\[\begin{bmatrix} 0&-i\\ i&0 \end{bmatrix}\]
  • Pauli-Z: rotation $Z$
  • Hadamard: superposition

Porte CNOT

Mathematiquement, a quoi ca ressemble ?

\[\begin{bmatrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&0&1\\ 0&0&1&0 \end{bmatrix}\]

Si on intrique des qubits a des portes a 2 qubits, est-ce que ca reste ?

Oui

C2NOT

\[\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&1\\ 0&0&0&0&0&0&1&0 \end{bmatrix}\]

SWAP

\[\begin{bmatrix} 1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1 \end{bmatrix}\]

Fredkin

\[\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&1\\ \end{bmatrix}\]

Single qubit operations visualization

CNOT gate effect

\[\begin{matrix} \color{blue}{\text{control qubit}} &&\color{blue}{\text{tensor product of control and target qubits before CNOT}}\\ \alpha_1\vert0\rangle &&\alpha_1\alpha_1\vert00\rangle+\alpha_1\beta_2\vert01\rangle + \alpha_2\beta_1\vert10\rangle+\beta_1\beta_2\vert11\rangle\\ \bigotimes&\Rightarrow&\text{CNOT}\\ \alpha_2\vert0\rangle+\beta_2\vert1\rangle&&\alpha_1\alpha_1\vert00\rangle+\alpha_1\beta_2\vert01\rangle + \alpha_2\beta_1\vert11\rangle+\beta_1\beta_2\vert10\rangle\\ \color{blue}{\text{target qubit}}&&\color{blue}{\text{control and target qubits state after CNOT}}\\ \color{blue}{\text{control qubit is }\vert0\rangle}\\ \alpha_1=1&&\alpha_2\vert00\rangle+\beta_2\vert01\rangle\\ &\Rightarrow&\text{CNOT}\\ \beta_1=0&&\alpha_2\vert00\rangle+\beta_2\vert01\rangle\\ \end{matrix}\]

The EPR pair entanglemet building block

Put control qubit into superposition state, then future gates act on 2 states simultaneously

\[\frac{\vert0\rangle+\vert1\rangle}{\sqrt 2}\]

\(\biggr\}\frac{\vert00\rangle+\vert11\rangle}{\sqrt{2}}\)

Subsenquently, flipping a qubit in an entangled state modifies all of tis components

Control-U gate

On prend une porte U qui est une porte arbitraire

\[\begin{bmatrix} 1&\dots&\dots&\dots\\ \dots&1&\dots&\dots\\ \dots&\dots&U_{11}&U_{12}\\ \dots&\dots&U_{21}&U_{22} \end{bmatrix}\]

Qubit lifecycle

  • Initialization
    • $\vert0\rangle$
  • Hadamard gate
    • $\frac{\vert0\rangle + \vert1\rangle}{\sqrt{2}}$
  • Other gate
    • aubit vector turning around in Bloch sphere
  • Measurement
    • Measurement returns $\vert 0\rangle$ qith a probability $\alpha^2$ depending on the qubit state, then qubit state becomes $\vert0\rangle$
    • Measurement returns $\vert1\rangle$ with a probability $\beta^2$

Universal gates sets

Ex: CNOT peut etre recree avec HZH Three CNOT gates: one SWAP gate

Getting confused with phase rotations

  • One round = $2\pi$
  • $S=$ one quarter round $=\frac{\pi}{2}$
  • $T=$ one eight roung

Solovay-Kitaev theorem

In other words

$SU(2^n)$ - Space of unitaries on $n$ qubits

On reversibility

On a practical basis:

  • The gates are not physically and thermodynamically reversible due to some irreversible processes like micro-wave generations and DACs (digital analog converters)
  • The whole digital process taking place before micro-wave generation and after their readout conversion back to digital could be implemented in classical adiabatic\thermodynamically reversible fashion
  • Currently being investigated at Sandia Labs, Wisconsin University and with SeeQC

Inputs and outputs

Probabilistic or deterministic readouts ?

On a practical basis:

  • the algorithm is executed many times, up to 8000 for IBM Q Experience
  • an average of qubits results is computed, producing a real number
  • the averahed result is theoratically deterministic
  • modulo the error generated by noise and decoherence

Basis, pure and mixed states

Examples

Normalement vous avez rien compris [name=Olivier Ezratty] [time=Tue, Oct 5, 2021 3:55 PM] [color=#907bf7]

Single qubit mixed state

Toying with density matrices

Qubits measurement

System state after measurement becomes:

\[\frac{M_m\vert\psi\rangle}{\sqrt{\langle\psi\vert M_m^✝M+m\vert\psi\rangle}}\]

with:

\[\sum_mM_m^✝M+m=1\]

Various qubits measurement methods

Computing semantics summary

5 DiVienzo criteria (IBM, 2000)

Main qubit types

From lab to packaged computers

Les ordinateurs quantiques actuels d’IBM:

L’ordinateur version commerciale:

Il y a un cube derriere qui contient l’ordinateur

IBM pense atteindre $1000$ qubits d’ici 2 ans, mais ca a pas trop l’air possible car au-dessus de $28$ qubits il y a une enorme perte de qualite.

Inside a typical quantum computer

En resume: 4 composantes

Avec des atomes froids, on n’aurait pas des compresseurs mais des pompes a ultra-vide.

Chez Google

Pourquoi les fils tournent ?

Pour passer plus de temps dans le froid ?

Pourquoi plusieurs etages ?

On est a $300K$ a l’exterieur, on veut minimiser plusieurs poches Chaque etage = une temperature Chaque disque a une taille plus petite en descendant les etages, pour faire passer le moins de chaleur possible Chaque etage est isole de celui au-dessus Les fils sont des attenuateurs de puissance mais ils generent de la chaleur

Quantum computer architecture

Physical layout example

Error correction

Coming form decoherence generated by:

  • flip, phase and leakage error
  • calibration errors
  • thermal noise
  • electric and magnetic noise
  • gravity
  • radioactivty
  • vacuum quantum fluctuations
  • cosmical rays

QEC zoo

This post is licensed under CC BY 4.0 by the author.