Lien de la note Hackmd
Lien du livre du prof

Quantum anneleaing
\[\mathcal H_p = \sum_{i=0}^Nh_i\sigma_i^Z+\sum_{i,j=0}^NJ_{ij}\sigma_i^Z\sigma_j^Z\]Jargon

D Wave
Super conducting quantum annealing
15 ans d’avance sur la creation de ses machines
- Spin up qubit $\vert\uparrow\rangle$
- Spin up qubit $\vert\downarrow\rangle$

Quantum annealing and ising model
\[\mathcal H_p =\sum_{i=0}^Nh_i\sigma_i^Z+\sum_{i\lt j}^NJ_{ij}\sigma_i^Z\sigma_j^Z\]- $\mathcal H_p$: system hamiltonian
- $h_i$: energy difference between 2 states of qubits i
- $v_i$: vertices containing qubit i
- $J_{ij}$: coupling between vertices $v_i$ et $v_j$ with close i and j
- $E$: edge, connecting qubits
Computing process

Starts with converting the probleme into a Ising model or QUBO (Quadratic Unconstrained Binary Optimization)
- Initialization of qubits states to $\vert\uparrow\rangle$ or $\vert\downarrow\rangle$
- Setting qubits bias levels $h_i$
- Slowly growing $J_{ij}$ coupling
- System converging to minimal $\mathcal H_p$
- Readout $\vert\uparrow\rangle$ or $\vert\downarrow\rangle$ states for all qubits, giving the solution to the problem of finding the energy minimum for $H_p$


Le chimera est la facon dont les qubits sont relies entre eux physiquement dans le processeur

Algorithms

Pegasus / Advantage 2020 generation
5436 qubits
Each qubits is connected to 15 neighbour qubits through 37440 couplers, from 6 per qubit in previous generations.
Qubits are operating at 15,8 mK
One order of magnitude improvement in time spent solving problems vs D-Wave 2000Q launched in 2017

Pourquoi c’est plus dur de rajouter de nouveaux qubits ?
C’est plus dur a intriquer

Superconducting qubits


Qubits operating temperatures rationale
Pourquoi est-ce qu’on doit les refroidir ces qubits ?
On veut eviter la decoherence des qubits mais pas que Les micro-ondes qu’on envoie sur les qubits sont conditionnees par le niveau d’energie On refroidit pour que le bruit ambiant soit inferieur a la puissance des micro-ondes

5 Superconducting qubits lab configuraiton



IBM

Roadmap



Google’s 1 million physical qubits plan

C’est quoi la consommation energetique ? - Theotime
Alice & Bob
French startup created by Théau Peronnin and Raphaël Lescanne, from ENS
with the help from Benjamin Huard (ENS Lyon), Zaki Leghtas (ENS Paris), Mazyar Mirrahmi (Inria), Philippe Campagne-Ibarcq (Inria) and Emmanuel Flurin (CEA)
- use cat-qubits based on two photons coupling in a cavity to increase reliability of superconducting qubits
- qubit information comes from measuring cavity photon number parity without measuring photon number
- expect to build a logical superconducting qubit with only 30 cat-qubits instead of 10 000 classical superconducting qubits
- significantly reduce the burden to create a LSQ FTQC (large scale quantum / fault tolerant quantum computer)
- plan to produce a first processor with logical qubits by 2023

Amazon
Amazon announced in december 2020 it will build its own quantum computers using cat-qubits superconducting, in a 118 pages theoretical paper
it plans to use surface codes QEC
it’s partnering with Caltech (incl John Preskill), Yale (Devoret/Schoelkopf teams) and other universities

Summary

Electron spins qubits
Different electron spins qubit platforms

How to detect a single charge?

How to manipulate a single spin?

How to realize a two-qubit gate?

State of the art of two qubit gates


planar systems with a huge number of electrodes to:
- define the reservoirs - source and drain
- control the height of the barrier between quantum dots
- define the depth of the quantum well
- manipulate the qubits
- read out the qubits
Toward a scalable platform

C12 Quantum Electronic
french startup created by Matthieu and Pierre Desjardins with the help from Taki Kontos (LPENS) electron spins qubits trapped in carbon nanotubes 5 qubits demonstrator planned for 2021/2022


Summary

NV centers qubits


NV centers implementation and controls

Quantum brillance
Australian startup
- ambiant temperature qubits
- 5 NV centers qubits demonstrated in 2021
- they plan to scale > 50 qubits in 2022
- fits on a desktop computer form factor


qubits NV centers

Topologic qubits
The topological qubit bit
Chez microsoft:


- better stability qubits
- low decoherence noise
- few errors
- long coherence time
- high gate speed
- nothing demonstrated so far
- no prototype
- different algorithms

Majorana fermions summary

Trapped ions qubits

IonQ
La boite la plus calee et ayant recu le plus de fonds: $$82$M en 2015
Maryland and Duke Universities spin-off launched by Christopher Monroe


| $\color{green}{\text{pros}}$ | $\color{red}{\text{cons}}$ |
|---|---|
| laser controlled gates | slow gates |
| $32$ qubits with a large quantum volume of $2^{22}$ reached in 2020 | not easy to scale, planning to network several tiny units (above) |
| long coherence time and good qubits fidelity | |
| excellent qubit connectivity thanks to phonons | |
| available on Microsoft and Amazon cloud services |
IPO planned in 2021
Honeywell
- 2D trapped ions announced in march 2020
- 4 qubits in march 2020
- 6 qubits in june 2020
- 10 qubits in septembre 2020
Better scalability project


Trapped ions qubits summary

Cold atoms qubits
Cold atoms and Rydberg states

Etat de Rydberg: etat tres energisant

Cold atoms qubits summary

Photon qubits
Photons qubits types and tools
Qubits

Instrumentation



Quantum dot photon source

Quantum dot photon source


DV and CV photon qubits


Photons qubits summary

