Home EPIQUANTI : Types de Qubits
Post
Cancel

EPIQUANTI : Types de Qubits

Lien de la note Hackmd

Lien du livre du prof

Slide du cours

Quantum anneleaing

\[\mathcal H_p = \sum_{i=0}^Nh_i\sigma_i^Z+\sum_{i,j=0}^NJ_{ij}\sigma_i^Z\sigma_j^Z\]

Jargon

D Wave

Super conducting quantum annealing

15 ans d’avance sur la creation de ses machines

Quantum annealing and ising model

\[\mathcal H_p =\sum_{i=0}^Nh_i\sigma_i^Z+\sum_{i\lt j}^NJ_{ij}\sigma_i^Z\sigma_j^Z\]
  • $\mathcal H_p$: system hamiltonian
  • $h_i$: energy difference between 2 states of qubits i
  • $v_i$: vertices containing qubit i
  • $J_{ij}$: coupling between vertices $v_i$ et $v_j$ with close i and j
  • $E$: edge, connecting qubits

Computing process

Starts with converting the probleme into a Ising model or QUBO (Quadratic Unconstrained Binary Optimization)

  1. Initialization of qubits states to $\vert\uparrow\rangle$ or $\vert\downarrow\rangle$
  2. Setting qubits bias levels $h_i$
  3. Slowly growing $J_{ij}$ coupling
  4. System converging to minimal $\mathcal H_p$
  5. Readout $\vert\uparrow\rangle$ or $\vert\downarrow\rangle$ states for all qubits, giving the solution to the problem of finding the energy minimum for $H_p$

Algorithms

Pegasus / Advantage 2020 generation

5436 qubits

Each qubits is connected to 15 neighbour qubits through 37440 couplers, from 6 per qubit in previous generations.

Qubits are operating at 15,8 mK

Pourquoi c’est plus dur de rajouter de nouveaux qubits ?

C’est plus dur a intriquer

Superconducting qubits

Qubits operating temperatures rationale

Pourquoi est-ce qu’on doit les refroidir ces qubits ?

On veut eviter la decoherence des qubits mais pas que Les micro-ondes qu’on envoie sur les qubits sont conditionnees par le niveau d’energie On refroidit pour que le bruit ambiant soit inferieur a la puissance des micro-ondes

5 Superconducting qubits lab configuraiton

IBM

Roadmap

Google

Google’s 1 million physical qubits plan

C’est quoi la consommation energetique ? - Theotime

Alice & Bob

with the help from Benjamin Huard (ENS Lyon), Zaki Leghtas (ENS Paris), Mazyar Mirrahmi (Inria), Philippe Campagne-Ibarcq (Inria) and Emmanuel Flurin (CEA)

  • use cat-qubits based on two photons coupling in a cavity to increase reliability of superconducting qubits
  • qubit information comes from measuring cavity photon number parity without measuring photon number
  • expect to build a logical superconducting qubit with only 30 cat-qubits instead of 10 000 classical superconducting qubits
  • significantly reduce the burden to create a LSQ FTQC (large scale quantum / fault tolerant quantum computer)
  • plan to produce a first processor with logical qubits by 2023

Amazon

it plans to use surface codes QEC

it’s partnering with Caltech (incl John Preskill), Yale (Devoret/Schoelkopf teams) and other universities

Summary

Electron spins qubits

Different electron spins qubit platforms

How to detect a single charge?

How to manipulate a single spin?

How to realize a two-qubit gate?

State of the art of two qubit gates

planar systems with a huge number of electrodes to:

  • define the reservoirs - source and drain
  • control the height of the barrier between quantum dots
  • define the depth of the quantum well
  • manipulate the qubits
  • read out the qubits

Toward a scalable platform

C12 Quantum Electronic

Summary

NV centers qubits

NV centers implementation and controls

Quantum brillance

qubits NV centers

Topologic qubits

The topological qubit bit

Chez microsoft:

  • better stability qubits
  • low decoherence noise
  • few errors
  • long coherence time
  • high gate speed

Majorana fermions summary

Trapped ions qubits

IonQ

$\color{green}{\text{pros}}$$\color{red}{\text{cons}}$
laser controlled gatesslow gates
$32$ qubits with a large quantum volume of $2^{22}$ reached in 2020not easy to scale, planning to network several tiny units (above)
long coherence time and good qubits fidelity 
excellent qubit connectivity thanks to phonons 
available on Microsoft and Amazon cloud services 

Honeywell

Trapped ions qubits summary

Cold atoms qubits

Cold atoms and Rydberg states

Cold atoms qubits summary

Photon qubits

Photons qubits types and tools

Qubits

Instrumentation

Quantum dot photon source

Quantum dot photon source

DV and CV photon qubits

Photons qubits summary

This post is licensed under CC BY 4.0 by the author.