Lien de la note Hackmd
Lien du livre du prof
Quantum anneleaing
\[\mathcal H_p = \sum_{i=0}^Nh_i\sigma_i^Z+\sum_{i,j=0}^NJ_{ij}\sigma_i^Z\sigma_j^Z\]Jargon
D Wave
Super conducting quantum annealing
15 ans d’avance sur la creation de ses machines
- Spin up qubit $\vert\uparrow\rangle$
- Spin up qubit $\vert\downarrow\rangle$
Quantum annealing and ising model
\[\mathcal H_p =\sum_{i=0}^Nh_i\sigma_i^Z+\sum_{i\lt j}^NJ_{ij}\sigma_i^Z\sigma_j^Z\]- $\mathcal H_p$: system hamiltonian
- $h_i$: energy difference between 2 states of qubits i
- $v_i$: vertices containing qubit i
- $J_{ij}$: coupling between vertices $v_i$ et $v_j$ with close i and j
- $E$: edge, connecting qubits
Computing process
Starts with converting the probleme into a Ising model or QUBO (Quadratic Unconstrained Binary Optimization)
- Initialization of qubits states to $\vert\uparrow\rangle$ or $\vert\downarrow\rangle$
- Setting qubits bias levels $h_i$
- Slowly growing $J_{ij}$ coupling
- System converging to minimal $\mathcal H_p$
- Readout $\vert\uparrow\rangle$ or $\vert\downarrow\rangle$ states for all qubits, giving the solution to the problem of finding the energy minimum for $H_p$
Le chimera est la facon dont les qubits sont relies entre eux physiquement dans le processeur
Algorithms
Pegasus / Advantage 2020 generation
5436 qubits
Each qubits is connected to 15 neighbour qubits through 37440 couplers, from 6 per qubit in previous generations.
Qubits are operating at 15,8 mK
One order of magnitude improvement in time spent solving problems vs D-Wave 2000Q launched in 2017
Pourquoi c’est plus dur de rajouter de nouveaux qubits ?
C’est plus dur a intriquer
Superconducting qubits
Qubits operating temperatures rationale
Pourquoi est-ce qu’on doit les refroidir ces qubits ?
On veut eviter la decoherence des qubits mais pas que Les micro-ondes qu’on envoie sur les qubits sont conditionnees par le niveau d’energie On refroidit pour que le bruit ambiant soit inferieur a la puissance des micro-ondes
5 Superconducting qubits lab configuraiton
IBM
Roadmap
Google’s 1 million physical qubits plan
C’est quoi la consommation energetique ? - Theotime
Alice & Bob
French startup created by Théau Peronnin and Raphaël Lescanne, from ENS
with the help from Benjamin Huard (ENS Lyon), Zaki Leghtas (ENS Paris), Mazyar Mirrahmi (Inria), Philippe Campagne-Ibarcq (Inria) and Emmanuel Flurin (CEA)
- use cat-qubits based on two photons coupling in a cavity to increase reliability of superconducting qubits
- qubit information comes from measuring cavity photon number parity without measuring photon number
- expect to build a logical superconducting qubit with only 30 cat-qubits instead of 10 000 classical superconducting qubits
- significantly reduce the burden to create a LSQ FTQC (large scale quantum / fault tolerant quantum computer)
- plan to produce a first processor with logical qubits by 2023
Amazon
Amazon announced in december 2020 it will build its own quantum computers using cat-qubits superconducting, in a 118 pages theoretical paper
it plans to use surface codes QEC
it’s partnering with Caltech (incl John Preskill), Yale (Devoret/Schoelkopf teams) and other universities
Summary
Electron spins qubits
Different electron spins qubit platforms
How to detect a single charge?
How to manipulate a single spin?
How to realize a two-qubit gate?
State of the art of two qubit gates
planar systems with a huge number of electrodes to:
- define the reservoirs - source and drain
- control the height of the barrier between quantum dots
- define the depth of the quantum well
- manipulate the qubits
- read out the qubits
Toward a scalable platform
C12 Quantum Electronic
french startup created by Matthieu and Pierre Desjardins with the help from Taki Kontos (LPENS) electron spins qubits trapped in carbon nanotubes 5 qubits demonstrator planned for 2021/2022
Summary
NV centers qubits
NV centers implementation and controls
Quantum brillance
Australian startup
- ambiant temperature qubits
- 5 NV centers qubits demonstrated in 2021
- they plan to scale > 50 qubits in 2022
- fits on a desktop computer form factor
qubits NV centers
Topologic qubits
The topological qubit bit
Chez microsoft:
- better stability qubits
- low decoherence noise
- few errors
- long coherence time
- high gate speed
- nothing demonstrated so far
- no prototype
- different algorithms
Majorana fermions summary
Trapped ions qubits
IonQ
La boite la plus calee et ayant recu le plus de fonds: $$82$M en 2015
Maryland and Duke Universities spin-off launched by Christopher Monroe
$\color{green}{\text{pros}}$ | $\color{red}{\text{cons}}$ |
---|---|
laser controlled gates | slow gates |
$32$ qubits with a large quantum volume of $2^{22}$ reached in 2020 | not easy to scale, planning to network several tiny units (above) |
long coherence time and good qubits fidelity | |
excellent qubit connectivity thanks to phonons | |
available on Microsoft and Amazon cloud services |
IPO planned in 2021
Honeywell
- 2D trapped ions announced in march 2020
- 4 qubits in march 2020
- 6 qubits in june 2020
- 10 qubits in septembre 2020
Better scalability project
Trapped ions qubits summary
Cold atoms qubits
Cold atoms and Rydberg states
Etat de Rydberg: etat tres energisant
Cold atoms qubits summary
Photon qubits
Photons qubits types and tools
Qubits
Instrumentation