Home PROC : Seance de revisions
Post
Cancel

PROC : Seance de revisions

Lien de la note Hackmd

Calculer la densite

Etant donnee $f$, est-ce une densite ? Si oui, $P(\text{X}\le3)$ ?

  • Verifier que la $f \ge 0$ et $\int^{+\infty}_{-\infty} = 1$

Calculer avec la densite

Etant donnee $f$ densite, calculer $E(\text{X})$, $Var({\text{X}})$

  • $E(\text{X}) = \int^{+\infty}_{-\infty}xf(x)dx$
  • $Var(\text{X}) = \int^{+\infty}{-\infty}\biggr(x-E(x)\biggr)^2f(x)dx=\int^{+\infty}{-\infty}x^2f(x)dx - \biggr(E(x)\biggr)^2$

X et Y independants, calculer la densite

$\text{X}$ et $\text{Y}$ independants, densite $f$ et $g$. Densite de $\text{X} + \text{Y}$ ?

  • $h(x) = \int^{+\infty}_{-\infty}f(x - y)g(y)dy$

Calculer la densite de $\alpha\text{X} + \beta$

Densite de $\alpha\text{X} + \beta$. Densite de $\text{X}$ : $f$. Il faut passer par la fonction de repartition.

  • $F(X) = P(\text{X}\le x) = \int^{+\infty}_{-\infty}f(t)dt$
  • $f(x) = F’(x)$
  • Soit $\text{Y} = \alpha\text{X} + \beta$, $g$ sa densite
    • $G(x) = P(\text{Y}\le x) = P(\alpha\text{X} + \beta\le x)$

Premier Cas

Si $\alpha\gt 0, G(x) = P(\alpha\text{X} + \beta\le x) = P(\text{X}\le\frac{x-\beta}{\alpha}) = F(\frac{x-\beta}{\alpha})$ En derivant $G’(x) = \frac{1}{\alpha}F’(\frac{x-\beta}{\alpha})$

Second Cas

Si $\alpha\lt 0, G(x) = P(\alpha\text{X}+\beta\lt x) = P(\text{X}\ge\frac{x-\beta}{\alpha}) = 1 - \frac{1}{\alpha}F’(\frac{x-\beta}{\alpha})$ En derivant $G’(x) = -\frac{1}{\alpha}F’(\frac{x-\beta}{\alpha}) \Rightarrow g(x) = -\frac{x-\beta}{\alpha}f(\frac{x-\beta}{\alpha})$

Convergence en probabilite

Definition

Rappel

Primitive de $\frac{1}{x^\alpha}$: \(\begin{aligned} x^{-\alpha} &= f(x)\\ F(x) &= \frac{1}{-\alpha+1}x^{-\alpha+1} \end{aligned}\)

Cas particulier

Inégalité de Tchebychev

Theoreme central limite

  • $X_1, X_2, …, X_n$
  • $\bar X_n = \frac{X_1 + … + X_n}{n}$ On a vu que $E(\bar X_n) = E(X_1)$ et que $Var(\bar X_n) = \frac{1}{n}Var(X_1)$

On a $\forall[a,b]\subset\mathbb{R}$, \(P(Z_n\in[a,b])\to_{n\to\infty}P(Z\in[a,b])\)

Exercice typique

Premier exercice

Soient $X_1, …, X_n$ independemment distribuee avec $E(X_1) = 3$, $Var(X_1) = 4$ et $\bar X_n = \frac{X_1 + … + X_n}{n}$. Trouver n tel que $P(\vert\bar X_n - 3\vert \ge 1)\le 5\%$.

Solution

:warning: Si $Z\to N(0,1)$, $P(-1,96\le Z\le1,96) = 95\%$ 1 est pris au hasar mais pas 3, c’est l’esperance. Ici, on definit \(\begin{aligned} Z_n &= \frac{\bar X_n - E(\bar X_n)}{\sigma(\bar X_n)}\\ &= \frac{\bar X_n - 3}{\sqrt{\frac{4}{n}}}\\ &= \frac{\bar X_n - 3}{\frac{2}{\sqrt n}} \end{aligned}\) Si n est grand: \(P\Biggr(-1,96\le\frac{\bar X_n - 3}{\frac{2}{\sqrt n}} \le 1,96\Biggr) = 95\%\\ P\Biggr(\Biggr\vert\frac{\bar X_n - 3}{\frac{2}{\sqrt n}}\Biggr\vert \le 1,96\Biggr) = 95\%\\ P\Biggr(\vert\bar X_n - 3\vert \le \frac{1,96 * 2}{\sqrt n}\Biggr) = 95%\\ P\Biggr(\vert\bar X_n - 3\vert \ge \frac{3,92}{\sqrt n}\Biggr) = 5\%\)

  • Si $\frac{3,92}{\sqrt n} = 1$, on a: \(P(\vert\bar X_n - 3\vert\ge 1) = 5\%\)
  • Si $\frac{3,92}{\sqrt n} \ge n_0$ avec $n_0 = 3,92^2$ valeur minimale de n, on a: \(P(\vert\bar X_n - 3\vert\ge 1) \ge P(\vert\bar X_n - 3\vert\ge \frac{3,92}{\sqrt n}) \le 5\%\)

Deuxieme exercice

On achete une machine. $P_{\text{Machine defectueuse}} = 2\%$. On achete $n$ machines. Pour $i\in [1, n]$ \(X_i = \begin{cases} 1 & \text{si defectueuse}\\ 0 & \text{sinon} \end{cases}\) et $\bar X_n = \frac{X_1 + … + X_n}{n}$

On sait que $\bar X_n\to_{\text{prob}}2\%$. Trouver $n_0$ tel que $\forall n\ge n_0$, $P(0,01\le\bar X_n\le 0,03) \ge 95\%$.

Solution

Autrement dit, \(\begin{aligned} P(\vert\bar X_n - 0,02\vert\le0,01)&\ge95\%\\ \text{donc}\space P(\vert\bar X_n - 0,02\vert\ge0,01)&\le5\% \end{aligned}\) \(X_i = \begin{cases} 1 & \text{avec proba}\space p = 0,02\\ 0 & \text{avec proba}\space 1-p \end{cases}\\ E(X_i) = 0*(1-p)+ 1\ast p = p\\ \begin{aligned} Var(X_i) &= E\biggr((X_i-E(X))^2\biggr)\\ &= E\biggr((X_i - p)^2\biggr) = p(1-p) = 0,02 * 0,98 \end{aligned}\) Pour $\bar X_n$: \(\begin{aligned} E(\bar X_n) = E(X_1) = p\\ Var(\bar X_n) = \frac{1}{n}Var(X_1) = \frac{p(1-p)}{p} \end{aligned}\) On pose: \(Z_n = \frac{\bar X_n \ E(\bar X_n)}{\sigma{\bar X_n}} = \frac{\bar X_n - p}{\sqrt{\frac{p(1 - p)}{n}}}\)

On a donc: \(\begin{aligned} P(\vert Z_n\vert\ge 1,96) &= 5\%\\ P(\biggr\vert \frac{\bar X_n - p}{\sqrt{\frac{p(1-p)}{n}}}\biggr\vert\ge 1,96) &= 5\%\\ P(\vert \bar X_n - p\vert\ge 1,96\sqrt{\frac{p(1-p)}{n}}) &= 5\%\\ \end{aligned}\) Si $n$ tel que $1,96\sqrt{\frac{p(1-p)}{n}} \le 0.01$, on a $P(\vert X_n - p\vert\ge 0,01)\le5\%$

Troisieme exercice

Soit $f(x) = …$.

  • Si vous pensez que $f$ est une densite, entrer $P(X\le3)$
  • Sinon rentrer $-1$
Solution

:abc: Discussion sur les integrales impropres. Il faut verifier que $\int_{-\infty}^{\infty}f(x)dx = 1$. Si $f$ est non-nulle sur une partie infinie de $\mathbb{R}$, il faut discuter de la nature de l’integrale. Soit elle est:

  • divergente et $f$ n’est pas une densite
  • convergente et verifier que l’integrale vaut 1 et que $f$ est positive

Exemples

Exemple 1

\(f(x) = \begin{cases} 0 & \text{si}\space x\le1\\ \frac{1}{x} & \text{si}\space x\gt1 \end{cases}\)

Solution

\(\int^{+\infty}_{-\infty}f(x)dx = \int^{+\infty}_{1}\frac{1}{x}dx\) L’integrale est divergente donc $f$ n’est pas une densite.

Exemple 2

\(f(x) = \begin{cases} 0 & \text{sur}\space ]-\infty, 1]\\ \frac{1}{x^{10}} & \text{sur}\space ]1, +\infty[ \end{cases}\)

Solution

\(\begin{aligned} \int^{+\infty}_{-\infty}f(x)dx &= \int^{+\infty}_{1}\frac{1}{x^{10}}\space\text{avec}\space x^{-10}\to\text{primitive:}\space\frac{1}{-10 + 1x^{^-10+1}}\\ &=\biggr[-\frac{1}{9}\ast\frac{1}{x^9}\biggr]^{+\infty}_{1}\\ &=0-(-\frac{1}{9}) \\ &= \frac{1}{9} \end{aligned}\) $f$ n’est pas une densite.

Exemple 3

\(f(x) = \begin{cases} 0 & \text{si}\space x\le1\\ \frac{9}{x^{10}} & \text{si}\space x\gt 1 \end{cases}\)

  • f est une densite (cf exo ci-dessus)
  • $P(X\le3)$? $E(X)$? $Var(X)$?
Solution
  1. $P(X\le3)$? \(\begin{aligned} P(X\le3) &= \int^{3}_{-\infty}f(x)dx\\ &=\int^3_1\frac{9}{x^{10}}dx \space\text{avec}\space \frac{9}{x^{10}}\to\text{primitive:}-\frac{1}{x^{9}}\\ &=\biggr[-\frac{1}{x^{9}}\biggr]_1^3 = -\frac{1}{3^9} + \frac{1}{1^9} = 1 - \frac{1}{3^9} \end{aligned}\)
  2. $E(X)$? \(\begin{aligned} E(X) &= \int^{+\infty}_{-\infty}xf(x)dx\\ &= \int^{+\infty}_{1}\frac{9x}{x^{10}}dx\\ &= \int^{+\infty}_{1}\frac{1}{x^{9}}dx \space\text{avec}\space x^{-9}\to\text{primitive:}\frac{1}{-9+1}x^{-9+1} = -\frac{1}{8}x^{-8}\\ &= 9\biggr[-\frac{1}{8}x^{-8}\biggr]_1^{+\infty}\\\ &= 9[-0+\frac{1}{8}] = \frac{9}{8} \end{aligned}\)
  3. $Var(X)$? \(\begin{aligned} Var(X) &= \int^{+\infty}_{-\infty}(x-\frac{9}{8})^2f(x)dx\\ &= E(X^2) - (E(X))^2\\ &= \int^{+\infty}_{-\infty}x^2f(x)dx - (\frac{9}{8})^2 \end{aligned}\) \(\int^{+\infty}_{-\infty}x^2f(x)dx = \int^{+\infty}_{1}x^2\frac{x9}{x^{10}}dx \space\text{avec}\space x^{-8}\to\text{primitive:}\frac{1}{-8+1}x^{-8+1}=-\frac{1}{7}x^{-7}\) \(E(X^2) = 9\biggr[-\frac{1}{7x^7}\biggr]_{1}^{+\infty} = 9\biggr(-0+\frac{1}{7}\biggr)\) \(Var(X) = \frac{9}{7} - \frac{9}{8}^2\)

Densite de $X + Y$ quand $X$ et $Y$ independants

  • $X$: densite $f$
  • $Y$: densite $g$
  • $Z = X + Y$: densite $h
    • $h$ est la convolution de $f$ et $g$ \(h(x) = \int^{+\infty}_{-\infty}f(x-y)g(y)dy\)

Exemple de distribution uniforme

  • $X\rightsquigarrow\mathcal{U}([1, 2])$
  • $Y\rightsquigarrow\mathcal{U}([4, 5])$ $f(x)g(y)\not = 0 \Leftrightarrow x\in[1,2]\space\text{et}\space y\in[4,5]$ \(h(x) = \int^{+\infty}_{-\infty}f(y)h(x - y)dy = \int^{+\infty}_{-\infty}f(x-y)g(y)dy\) Soit $x_0$ fixe, on calcule $h(x_0) = \int^{+\infty}_{-\infty}f(x_0-y)g(y)dy$. \(\begin{aligned} f(x_0-y)g(y) \not= 0 &\Leftrightarrow \begin{cases} 1\le x_0-y\le2\\ 4\le y\le 5 \end{cases}\\ &\Leftrightarrow \begin{cases} \begin{aligned} x_0 -2\le\space &y\le x_0 - 1\\ 4\le\space &y\le 5 \end{aligned} \end{cases} \end{aligned}\)
  • Cas $x_0 - 1\lt4$ ($x_0 \lt 5$):
    • Pas de $y$ qui convient
    • $h(x_0)=\int^{+\infty}_{-\infty}0dx=0$
  • Cas $5\le x_0 - 2$ ($x_0\ge7$):
    • Pas d’intersection
    • $h(x_0) = 0$
  • Cas $4\le x_0 - 2\le5\le x_0 - 1$:
    • $h(x_0) = \int_{x_0 -2}^5 1\ast1dx=[x]_{x_0 -2}^5 = 5-(x_0 - 2) = 7 - x_0$
  • Cas $x_0-2\le4\le x_0 -1\le5$ ($5\le x\le6$):
    • $h(x_0) = \int_4^{x_0-1}1dy = [y]_4^{x_0-1} = x_0 - 1 - 4 = x_0 - 5$

Finalement:

  • $x\in[5,6]$, $h(x_0) = x_0 - 5$
  • $x\in[6,7]$, $h(x_0) = 7 - x_0$
  • Ailleurs, $h(x_0)=0$
This post is licensed under CC BY 4.0 by the author.